Go to top
Resources

Additional Info

  • Aggregate
  • Cement
  • Slag Cement
  • Chemical Addmixture
  • Ready Mix Concrete
  • Flowable Fill
  • Interlocking Concrete Blocks
  • Pervious Concrete
  • Concrete Glossary
  • Industrial Links

Beyond The Basics

  • Ready Tips
  • Concrete in Practice

Basics of Concrete

concrete-pouringIn its simplest form, concrete is a mixture of paste and aggregates. The paste, composed of portland cement and water, coats the surface of the fine and coarse aggregates. The fine and coarse aggregates are sands and crushed rocks. Through a chemical reaction called hydration, the paste hardens and gains strength to form the rock-like mass known as concrete.

Within this process lies the key to a remarkable trait of concrete: it’s plastic and malleable when newly mixed, strong and durable when hardened. These qualities explain why one material, concrete, can build skyscrapers, bridges, sidewalks and superhighways, houses and dams.

Proportioning

The key to achieving a strong, durable concrete rests in the careful proportioning and mixing of the ingredients. A concrete mixture that does not have enough paste to fill all the voids between the aggregates will be difficult to place and will produce rough, honeycombed surfaces and porous concrete. A mixture with an excess of cement paste will be easy to place and will produce a smooth surface; however, the resulting concrete is likely to shrink more and be uneconomical.

A properly designed concrete mixture will possess the desired workability for the fresh concrete and the required durability and strength for the hardened concrete. Typically, a mix is about 10 to 15 percent cement, 60 to 75 percent aggregate and 15 to 20 percent water. Entrained air in many concrete mixes may also take up another 5 to 8 percent.

Cement and water form a paste that coats each particle of stone and sand. Through a chemical reaction called hydration, the cement paste hardens and gains strength. The character of the concrete is determined by quality of the paste. The strength of the paste, in turn, depends on the ratio of water to cement. The water-cement ratio is the weight of the mixing water divided by the weight of the cement. High-quality concrete is produced by lowering the water-cement ratio as much as possible without sacrificing the workability of fresh concrete. Generally, using less water produces a higher quality concrete provided the concrete is properly placed, consolidated, and cured.